Tools & Experimental Research (TER) Projects

Pilot Waves

Manager: Alexander Tolstov – Sponsor: Prof. Seth Putterman

Learning Objectives: Reading Research Papers, Writing Research Proposals, Standard Laboratory Equipment Knowledge

Applications Closed

Pilot wave theory is an alternative interpretation of quantum mechanics, originally created by De Broglie and later refined into Bohmian mechanics. This research group will design, propose, and create an experiment that replicates the hydrodynamic pilot wave results shown in the John Bush paper, Pilot-Wave Hydrodynamics. This experiment will have specific requirements set by the contracting professor (Prof. Seth Putterman), such as the classical demonstration of quantum properties like entanglement. Team members will learn the basics of reading research papers, writing research proposals, and designing a professional experiment.

PID w/ Microcontroller

Manager: Helena Huang

Learning Objectives: Microcontrollers, Electronics (Design, Soldering)

Applications Closed

A Proportional-Integral-Differential (PID) controller is a device used to make educated guesses with a system’s history to predict its future and to control physical parameters using that knowledge. For example, most cars use PID controllers to control their speed – they look at the current speed, where it’s going (derivative) and where it’s been (integral). In this project, team members will design a car together, and learn how to program a microcontroller (MCU), specifically an Arduino development board which utilizes the ATmega328p, to control the movement of the car so that it maintains a certain distance with the object in front of it. This will include how to interpret signals from a distance sensor, how to store and manipulate data for PID control, and how to output a signal to control the motion of the car.

High Speed Camera for Plasma Lab with Raspberry Pi with Prof. Carter

Manager: Sriram Bharadwaj – Sponsor: Prof. Troy Carter – Learning Objectives: Experimental Design, Electronics, Engineering, C++

Applications Closed

The plasma in LAPD is operated in pulsed mode, for about 10 ms duration once per second.  Remarkable physics happens on the time scale of 10 ms, so we need a camera that has a shutter speed in this ballpark, e.g. 10-100 us.  There are several available for over $1000. Instead, we want to look at cheap cameras available for use on a Raspberry Pi.  Some of them claim to go down to 50µs exposure time, but anything sub-millisecond would be useful, just the shorter the better. This team’s goal is to identify a camera suitable for this type of operation and operate it using a Raspberry Pi with C++.

Elementary Particle Detection

Manager: PJ Smigliani – Sponsor: Prof. Nathan Whitehorn – Learning Objectives: Elementary Particle Physics, Hardware Engineering and Design, Data Analysis

Applications: Closed

Cloud chambers were used in the discoveries of the positron (1932) and the muon (1936) by Carl Anderson, who was awarded the Nobel Prize in Physics for his positron discovery. In this project, team members will learn about elementary particles, design and build a cloud chamber, and use it to detect muons reaching the earth. Team members can then choose to use it to observe the fluctuations in muon flux at high altitudes, which entails a field trip to a nearby mountain with the built cloud chamber. Members can also measure certain quantities such as the muon’s charge to mass ratio with the chamber. The cloud chamber may also be put on display in the Physics and Astronomy Building.

2D Solitons

Manager: TBA – Sponsor: Prof. Seth Putterman – Learning Objectives: Python, Electronics, Literature Research

Solitons are self-reinforcing solitary wavepackets that maintain their shape and propagate without loss of energy. Team members will research the concept and mathematics behind solitons, drawing from experiments in fields ranging from AMO to fluid mechanics. From this knowledge, members will determine and create an experimental apparatus that produces 2D solitons. Team members will begin with a simulation of the experiment and then convert this to a physical experiment.

CNC Laser Etcher with Microcontrollers

Manager: TBA – In-House – Learning Objectives: Microcontrollers, Electronics, Engineering

A CNC Laser Etcher is a computer controlled system to engrave designs in different materials with a high-power laser. Team members will learn how to program a CNC interface which can translate a digital design to a physical motion of the laser. The CNC Etcher they build will have many uses as a tool for future projects in the Upsilon Lab, especially in experiment design.

Magnetic Levitator Simulation & Build

Manager: TBA – In-House – Learning Objectives: Programming, Writing Reports

Magnetic fields can be used to levitate objects with ease- this has been shown both in theory and in practice. Team members on this project will begin with a computer simulation of the magnetic fields in a traditional levitator system. Then, members will have the opportunity to propose a design for building a physical version of their simulation to test their predictions.